Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Med Genet A ; 188(12): 3432-3447, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36367278

RESUMO

Verheij syndrome (VRJS) is a rare craniofacial spliceosomopathy presenting with craniofacial dysmorphism, multiple congenital anomalies and variable neurodevelopmental delay. It is caused by single nucleotide variants (SNVs) in PUF60 or interstitial deletions of the 8q24.3 region. PUF60 encodes a splicing factor which forms part of the spliceosome. To date, 36 patients with a sole diagnosis of VRJS due to disease-causing PUF60 SNVs have been reported in peer-reviewed publications. Although the depth of their phenotyping has varied greatly, they exhibit marked phenotypic heterogeneity. We report 10 additional unrelated patients, including the first described patients of Khmer, Indian, and Vietnamese ethnicities, and the eldest patient to date, with 10 heterozygous PUF60 variants identified through exome sequencing, 8 previously unreported. All patients underwent deep phenotyping identifying variable dysmorphism, growth delay, neurodevelopmental delay, and multiple congenital anomalies, including several unique features. The eldest patient is the only reported individual with a germline variant and neither neurodevelopmental delay nor intellectual disability. In combining these detailed phenotypic data with that of previously reported patients (n = 46), we further refine the known frequencies of features associated with VRJS. These include neurodevelopmental delay/intellectual disability (98%), axial skeletal anomalies (74%), appendicular skeletal anomalies (73%), oral anomalies (68%), short stature (66%), cardiac anomalies (63%), brain malformations (48%), hearing loss (46%), microcephaly (41%), colobomata (38%), and other ocular anomalies (65%). This case series, incorporating three patients from previously unreported ethnic backgrounds, further delineates the broad pleiotropy and mutational spectrum of PUF60 pathogenic variants.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Microcefalia , Fatores de Processamento de RNA , Proteínas Repressoras , Humanos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Fenótipo , Proteínas Repressoras/genética , Fatores de Processamento de RNA/genética , Spliceossomos/genética , Spliceossomos/patologia
2.
Genet Med ; 24(6): 1283-1296, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35346573

RESUMO

PURPOSE: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed. METHODS: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome. RESULTS: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted. CONCLUSION: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease.


Assuntos
DNA Helicases , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Transtornos do Neurodesenvolvimento , DNA Helicases/genética , Heterozigoto , Humanos , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Síndrome
3.
Genet Med ; 23(1): 183-191, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32939031

RESUMO

PURPOSE: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. METHODS: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. RESULTS: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). CONCLUSION: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design.


Assuntos
Exoma , Nefropatias , Adulto , Austrália , Criança , Testes Genéticos , Humanos , Nefropatias/diagnóstico , Nefropatias/genética , Sequenciamento do Exoma
4.
Blood Adv ; 4(6): 1131-1144, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32208489

RESUMO

First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Epigênese Genética , Células Germinativas , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Linhagem , Fenótipo
5.
BMC Nephrol ; 20(1): 330, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31438875

RESUMO

BACKGROUND: Proteinuria is a common clinical presentation, the diagnostic workup for which involves many non-invasive and invasive investigations. We report on two siblings that highlight the clinically relevant functional role of cubulin for albumin resorption in the proximal tubule and supports the use of genomic sequencing early in the diagnostic work up of patients who present with proteinuria. CASE PRESENTATION: An 8-year-old boy was referred with an incidental finding of proteinuria. All preliminary investigations were unremarkable. Further assessment revealed consanguineous family history and a brother with isolated proteinuria. Renal biopsy demonstrated normal light microscopy and global glomerular basement membrane thinning on electron microscopy. Chromosomal microarray revealed long continuous stretches of homozygosity (LCSH) representing ~ 4.5% of the genome. Shared regions of LCSH between the brothers were identified and their further research genomic analysis implicated a homozygous stop-gain variant in CUBN (10p12.31). CONCLUSIONS: CUBN mutations have been implicated as a hereditary cause of megaloblastic anaemia and variable proteinuria. This is the second reported family with isolated proteinuria due to biallelic CUBN variants in the absence of megaloblastic anaemia, demonstrating the ability of genomic testing to identify genetic causes of nephropathy within expanding associated phenotypic spectra. Genomic sequencing, undertaken earlier in the diagnostic trajectory, may reduce the need for invasive investigations and the time to definitive diagnosis for patients and families.


Assuntos
Homozigoto , Mutação/genética , Proteinúria/genética , Receptores de Superfície Celular/genética , Criança , Pré-Escolar , Consanguinidade , Membrana Basal Glomerular/ultraestrutura , Humanos , Achados Incidentais , Rim/patologia , Masculino , Microscopia Eletrônica , Irmãos , Sequenciamento do Exoma
6.
J Genet Couns ; 27(5): 1010-1021, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29368275

RESUMO

As genomic sequencing becomes more widely available in clinical settings for diagnostic purposes, a number of genetic counseling issues are gaining precedence. The ability to manage these issues will be paramount as genetic and non-genetic healthcare professionals navigate the complexities of using genomic technologies to facilitate diagnosis and inform patient management. Counseling issues arising when counseling for diagnostic genomic sequencing were identified by four genetic counselors with 10 years of collective experience providing genetic counseling in this setting. These issues were discussed and refined at a meeting of genetic counselors working in clinical genomics settings in Melbourne, Australia. Emerging counseling issues, or variations of established counseling issues, were identified from the issues raised. Illustrative cases were selected where pre- and post-test genetic counseling was provided in clinical settings to individuals who received singleton or trio WES with targeted analysis. Counseling issues discussed in this paper include a reappraisal of how genetic counselors manage hope in the genomic era, informed consent for secondary use of genomic data, clinical reanalysis of genomic data, unexpected or unsolicited secondary findings, and trio sequencing. The authors seek to contribute to the evolving understanding of genetic counseling for diagnostic genomic sequencing through considering the applicability of existing genetic counseling competencies to managing emerging counseling issues and discussing genetic counseling practice implications.


Assuntos
Aconselhamento Genético/psicologia , Genômica , Austrália , Humanos
7.
Am J Med Genet A ; 170(11): 2895-2904, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27411073

RESUMO

Chromosomal microarray is an increasingly utilized diagnostic test, particularly in the pediatric setting. However, the clinical significance of copy number variants detected by this technology is not always understood, creating uncertainties in interpreting and communicating results. The aim of this study was to explore parents' experiences of an uncertain microarray result for their child. This research utilized a qualitative approach with a phenomenological methodology. Semi-structured interviews were conducted with nine parents of eight children who received an uncertain microarray result for their child, either a 16p11.2 microdeletion or 15q13.3 microdeletion. Interviews were transcribed verbatim and thematic analysis was used to identify themes within the data. Participants were unprepared for the abnormal test result. They had a complex perception of the extent of their child's condition and a mixed understanding of the clinical relevance of the result, but were accepting of the limitations of medical knowledge, and appeared to have adapted to the result. The test result was empowering for parents in terms of access to medical and educational services; however, they articulated significant unmet support needs. Participants expressed hope for the future, in particular that more information would become available over time. This research has demonstrated that parents of children who have an uncertain microarray result appeared to adapt to uncertainty and limited availability of information and valued honesty and empathic ongoing support from health professionals. Genetic health professionals are well positioned to provide such support and aid patients' and families' adaptation to their situation as well as promote empowerment. © 2016 Wiley Periodicals, Inc.


Assuntos
Aberrações Cromossômicas , Testes Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Pais/psicologia , Incerteza , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Inquéritos e Questionários
8.
Nat Genet ; 43(10): 1012-7, 2011 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-21892162

RESUMO

We report the discovery of GATA2 as a new myelodysplastic syndrome (MDS)-acute myeloid leukemia (AML) predisposition gene. We found the same, previously unidentified heterozygous c.1061C>T (p.Thr354Met) missense mutation in the GATA2 transcription factor gene segregating with the multigenerational transmission of MDS-AML in three families and a GATA2 c.1063_1065delACA (p.Thr355del) mutation at an adjacent codon in a fourth MDS family. The resulting alterations reside within the second zinc finger of GATA2, which mediates DNA-binding and protein-protein interactions. We show differential effects of the mutations on the transactivation of target genes, cellular differentiation, apoptosis and global gene expression. Identification of such predisposing genes to familial forms of MDS and AML is critical for more effective diagnosis and prognosis, counseling, selection of related bone marrow transplant donors and development of therapies.


Assuntos
Fator de Transcrição GATA2/genética , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Característica Quantitativa Herdável , Sequência de Aminoácidos , Animais , Células COS , Diferenciação Celular , Proliferação de Células , Chlorocebus aethiops , Mapeamento Cromossômico , DNA Complementar , Feminino , Fator de Transcrição GATA2/metabolismo , Predisposição Genética para Doença , Células HEK293 , Haplótipos , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Plasmídeos , Polimorfismo de Nucleotídeo Único
11.
PLoS One ; 5(4): e10003, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20368992

RESUMO

Recent association studies in multiple sclerosis (MS) have identified and replicated several single nucleotide polymorphism (SNP) susceptibility loci including CLEC16A, IL2RA, IL7R, RPL5, CD58, CD40 and chromosome 12q13-14 in addition to the well established allele HLA-DR15. There is potential that these genetic susceptibility factors could also modulate MS disease severity, as demonstrated previously for the MS risk allele HLA-DR15. We investigated this hypothesis in a cohort of 1006 well characterised MS patients from South-Eastern Australia. We tested the MS-associated SNPs for association with five measures of disease severity incorporating disability, age of onset, cognition and brain atrophy. We observed trends towards association between the RPL5 risk SNP and time between first demyelinating event and relapse, and between the CD40 risk SNP and symbol digit test score. No associations were significant after correction for multiple testing. We found no evidence for the hypothesis that these new MS disease risk-associated SNPs influence disease severity.


Assuntos
Predisposição Genética para Doença , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Adulto , Idade de Início , Atrofia , Austrália , Encéfalo/patologia , Cognição , Estudos de Coortes , Avaliação da Deficiência , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
12.
Front Biosci ; 12: 3010-6, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17485278

RESUMO

The Ts65Dn mouse is the most widely investigated segmentally trisomic mouse model of Down syndrome. Quantitative PCR based methods are the preferred way of detecting the trisomic segment for genotyping purposes. However, identification of a 1.5 fold difference in target DNA is at the limit of detection of most quantitative PCR based methods, and in practice this can lead to difficulties in assigning genotypes. We report a 100% accurate multiplex ligation-dependent probe amplification (MLPA) assay for genotyping the Ts65Dn mouse that is also applicable to all other segmentally trisomic mouse models of Down syndrome.


Assuntos
Modelos Animais de Doenças , Síndrome de Down/genética , Sondas Moleculares , Animais , Cromossomos Humanos Par 21 , Genótipo , Humanos , Cariotipagem , Camundongos , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...